Jump to content
HWBOT Community Forums

The Stilt's Ryzen: Strictly technical


Massman

Recommended Posts

Hands down the best technical article on Ryzen I've read so far. Check it out here: https://forums.anandtech.com/threads/ryzen-strictly-technical.2500572/

 

Some quotes:

 

- "Zeppelin features a highly advanced power management, as stated many times before. Just like Carrizo / Bristol Ridge, which feature a very similar PM, Zeppelin can infact support cTDP as well. cTDP is not officially supported (or available) on any consumer Zeppelin based SKU (AFAIK). The lack of official support is merely a distraction. 850 points in Cinebench 15 at 30W is quite telling. Or not telling, but absolutely massive. Zeppelin can reach absolutely monstrous and unseen levels of efficiency, as long as it operates within its ideal frequency range."

 

- "Overclocking Ryzen, at least the higher-end models is kind of a double-edged sword. Due to how the Turbo / XFR operates in Zeppelin and the rather slim overclocking margins, the user might end up actually losing single core performance when the CPU is overclocked. Since the Turbo / XFR will always be disabled when the CPU is overclocked (upon entering the “OC-Modeâ€), the single core performance might actually be lower than at stock, if the user is unable to reach the same speed on all cores as the CPU operated at single core stress at default (e.g. 4.1GHz on 1800X SKU)."

 

- "As indicated by the Vmin-Fmax curve, Zeppelin's voltage scaling is perfectly linear until 3.3GHz (25mV per 100MHz). The first deviation ("Critical 1") from this linear behavior can be seen at 3.3GHz. The second and the final deviation ("Critical 2") can be seen at 3.5GHz. Beyond this point the voltage scaling is neither linear or recovers even temporarily, and the CPU is requiring higher voltage in increasingly larger steps to scale further. The ideal frequency range for the process or the design (as a whole) appears to be 2.1 - 3.3GHz (25mV per 100MHz). Above this region (>= 3.3GHz) the voltage scaling gradually deteriorates to 40 - 100mV+ per 100MHz."

 

:eek:

Link to comment
Share on other sites

Hands down the best technical article on Ryzen I've read so far. Check it out here: https://forums.anandtech.com/threads/ryzen-strictly-technical.2500572/

 

Some quotes:

 

- "Zeppelin features a highly advanced power management, as stated many times before. Just like Carrizo / Bristol Ridge, which feature a very similar PM, Zeppelin can infact support cTDP as well. cTDP is not officially supported (or available) on any consumer Zeppelin based SKU (AFAIK). The lack of official support is merely a distraction. 850 points in Cinebench 15 at 30W is quite telling. Or not telling, but absolutely massive. Zeppelin can reach absolutely monstrous and unseen levels of efficiency, as long as it operates within its ideal frequency range."

 

- "Overclocking Ryzen, at least the higher-end models is kind of a double-edged sword. Due to how the Turbo / XFR operates in Zeppelin and the rather slim overclocking margins, the user might end up actually losing single core performance when the CPU is overclocked. Since the Turbo / XFR will always be disabled when the CPU is overclocked (upon entering the “OC-Modeâ€), the single core performance might actually be lower than at stock, if the user is unable to reach the same speed on all cores as the CPU operated at single core stress at default (e.g. 4.1GHz on 1800X SKU)."

 

- "As indicated by the Vmin-Fmax curve, Zeppelin's voltage scaling is perfectly linear until 3.3GHz (25mV per 100MHz). The first deviation ("Critical 1") from this linear behavior can be seen at 3.3GHz. The second and the final deviation ("Critical 2") can be seen at 3.5GHz. Beyond this point the voltage scaling is neither linear or recovers even temporarily, and the CPU is requiring higher voltage in increasingly larger steps to scale further. The ideal frequency range for the process or the design (as a whole) appears to be 2.1 - 3.3GHz (25mV per 100MHz). Above this region (>= 3.3GHz) the voltage scaling gradually deteriorates to 40 - 100mV+ per 100MHz."

 

:eek:

 

I think the most interesting thing about that is how he suggested Ryzen APU's might be made on a different 14nm process which could mean higher clocks

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...